

Sam Newman

Building Microservices

978-1-491-95035-7

[LSI]

Building Microservices
by Sam Newman

Copyright © 2015 Sam Newman. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Brian MacDonald
Production Editor: Kristen Brown
Copyeditor: Rachel Monaghan
Proofreader: Jasmine Kwityn

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

February 2015: First Edition

Revision History for the First Edition
2014-01-30: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491950357 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Building Microservices, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491950357

Table of Contents

1. Splitting the Monolith. 5
It’s All About Seams 5
Breaking Apart MusicCorp 6
The Reasons to Split the Monolith 7

Pace of Change 7
Team Structure 7
Security 8
Technology 8

Tangled Dependencies 8
The Database 8
Getting to Grips with the Problem 8
Example: Breaking Foreign Key Relationships 9
Example: Shared Static Data 11
Example: Shared Data 12
Example: Shared Tables 13
Refactoring Databases 14

Staging the Break 14
Transactional Boundaries 15

Try Again Later 17
Abort the Entire Operation 17
Distributed Transactions 18
So What to Do? 19

Reporting 19
The Reporting Database 19
Data Retrieval via Service Calls 21
Data Pumps 22

Alternative Destinations 24
Event Data Pump 24

iii

Backup Data Pump 25
Toward Real Time 26
Cost of Change 26
Understanding Root Causes 27
Summary 28

iv | Table of Contents

CHAPTER 1

Splitting the Monolith

We’ve discussed what a good service looks like, and why smaller servers may be better
for us. We also previously discussed the importance of being able to evolve the design
of our systems. But how do we handle the fact that we may already have a large num‐
ber of codebases lying about that don’t follow these patterns? How do we go about
decomposing these monolithic applications without having to embark on a big-bang
rewrite?

The monolith grows over time. It acquires new functionality and lines of code at an
alarming rate. Before long it becomes a big, scary giant presence in our organization
that people are scared to touch or change. But all is not lost! With the right tools at
our disposal, we can slay this beast.

It’s All About Seams
We discussed in an earlier chapter that we want our services to be highly cohesive and
loosely coupled. The problem with the monolith is that all too often it is the opposite
of both. Rather than tend toward cohesion, and keep things together that tend to
change together, we acquire and stick together all sorts of unrelated code. Likewise,
loose coupling doesn’t really exist: if I want to make a change to a line of code, I may
be able to do that easily enough, but I cannot deploy that change without potentially
impacting much of the rest of the monolith, and I’ll certainly have to redeploy the
entire system.

In his book Working Effectively with Legacy Code (Prentice-Hall), Michael Feathers
defines the concept of a seam—that is, a portion of the code that can be treated in
isolation and worked on without impacting the rest of the codebase. We also want to
identify seams. But rather than finding them for the purpose of cleaning up our code‐
base, we want to identify seams that can become service boundaries.

5

So what makes a good seam? Well, as we discussed previously, bounded contexts
make excellent seams since by definition they represent cohesive and yet loosely cou‐
pled boundaries in an organization. So the first step is to start identifying these
boundaries in our code.

Most programming languages provide namespace concepts that allow us to group
similar code together. Java’s package concept is a fairly weak example, but gives us
much of what we need. All other mainstream programming languages have similar
concepts built in, with JavaScript very arguably being an exception.

Breaking Apart MusicCorp
Imagine we have a large backend monolithic service that represents a substantial
amount of the behavior of MusicCorp’s online systems. To start, we should identify
the high-level bounded contexts that we think exist in our organization, as we dis‐
cussed in ???. Then we want to try to understand what bounded contexts the mono‐
lith maps to. Let’s imagine that initially we identify four contexts we think our
monolithic backend covers:

Catalog
Everything to do with metadata about the items we offer for sale

Finance
Reporting for accounts, payments, refunds, and so on

Warehouse
Dispatching and returning of customer orders, managing inventory levels, and
the like

Recommendation
Our patent-pending, revolutionary recommendation system, which is highly
complex code written by a team with more PhDs than the average science lab

The first thing to do is to create packages representing these contexts, and then move
the existing code into them. With modern IDEs, code movement can be done auto‐
matically via refactorings, and can be done incrementally while we are doing other
things. You’ll still need tests to catch any breakages made by moving code, however,
especially if you’re using a dynamically typed language where the IDEs have a harder
time of performing refactoring. Over time, we start to see what code fits well, and
what code is left over and doesn’t really fit anywhere. This remaining code will often
identify bounded contexts we might have missed!

During this process we can use code to analyze the dependencies between these pack‐
ages too. Our code should represent our organization, so our packages representing
the bounded contexts in our organization should interact in the same way the real-life
organizational groups in our domain interact. For example, tools like Structure 101

6 | Chapter 1: Splitting the Monolith

allow us to see the dependencies between packages graphically. If we spot things that
look wrong—for example, the warehouse package depends on code in the finance
package when no such dependency exists in the real organization—then we can
investigate this problem and try to resolve it.

This process could take an afternoon on a small codebase, or several weeks or months
when you’re dealing with millions of lines of code. You may not need to sort all code
into domain-oriented packages before splitting out your first service, and indeed it
can be more valuable to concentrate your effort in one place. There is no need for this
to be a big-bang approach. It is something that can be done bit by bit, day by day, and
we have a lot of tools at our disposal to track our progress.

So now that we have our codebase organized around these seams, what next?

The Reasons to Split the Monolith
Deciding that you’d like a monolithic service or application to be smaller is a good
start. But I would strongly advise you to chip away at these systems. An incremental
approach will help you learn about microservices as you go, and will also limit the
impact of getting something wrong (and you will get things wrong!). Think of our
monolith as a block of marble. We could blow the whole thing up, but that rarely
ends well. It makes much more sense to just chip away at it incrementally.

So if we are going to break apart the monolith a piece at a time, where should we
start? We have our seams now, but which one should we pull out first? It’s best to
think about where you are going to get the most benefit from some part of your code‐
base being separated, rather than just splitting things for the sake of it. Let’s consider
some drivers that might help guide our chisel.

Pace of Change
Perhaps we know that we have a load of changes coming up soon in how we manage
inventory. If we split out the warehouse seam as a service now, we could change that
service faster, as it is a separate autonomous unit.

Team Structure
MusicCorp’s delivery team is actually split across two geographical regions. One team
is in London, the other in Hawaii (some people have it easy!). It would be great if we
could split out the code that the Hawaii team works on the most, so it can take full
ownership. We’ll explore this idea further in ???.

The Reasons to Split the Monolith | 7

Security
MusicCorp has had a security audit, and has decided to tighten up its protection of
sensitive information. Currently, all of this is handled by the finance-related code. If
we split this service out, we can provide additional protections to this individual ser‐
vice in terms of monitoring, protection of data at transit, and protection of data at
rest—ideas we’ll look at in more detail in ???.

Technology
The team looking after our recommendation system has been spiking out some new
algorithms using a logic programming library in the language Clojure. The team
thinks this could benefit our customers by improving what we offer them. If we could
split out the recommendation code into a separate service, it would be easy to con‐
sider building an alternative implementation that we could test against.

Tangled Dependencies
The other point to consider when you’ve identified a couple of seams to separate is
how entangled that code is with the rest of the system. We want to pull out the seam
that is least depended on if we can. If you can view the various seams you have found
as a directed acyclical graph of dependencies (something the package modeling tools
I mentioned earlier are very good at), this can help you spot the seams that are likely
going to be harder to disentangle.

This brings us to what is often the mother of all tangled dependencies: the database.

The Database
We’ve already discussed at length the challenges of using databases as a method of
integrating multiple services. As I made it pretty clear earlier, I am not a fan! This
means we need to find seams in our databases too so we can split them out cleanly.
Databases, however, are tricky beasts.

Getting to Grips with the Problem
The first step is to take a look at the code itself and see which parts of it read to and
write from the database. A common practice is to have a repository layer, backed by
some sort of framework like Hibernate, to bind your code to the database, making it
easy to map objects or data structures to and from the database. If you have been fol‐
lowing along so far, you’ll have grouped our code into packages representing our
bounded contexts; we want to do the same for our database access code. This may
require splitting up the repository layer into several parts, as shown in Figure 1-1.

8 | Chapter 1: Splitting the Monolith

Figure 1-1. Splitting out our repository layers

Having the database mapping code colocated inside the code for a given context can
help us understand what parts of the database are used by what bits of code. Hiber‐
nate, for example, can make this very clear if you are using something like a mapping
file per bounded context.

This doesn’t give us the whole story, however. For example, we may be able to tell that
the finance code uses the ledger table, and that the catalog code uses the line item
table, but it might not be clear that the database enforces a foreign key relationship
from the ledger table to the line item table. To see these database-level constraints,
which may be a stumbling block, we need to use another tool to visualize the data. A
great place to start is to use a tool like the freely available SchemaSpy, which can gen‐
erate graphical representations of the relationships between tables.

All this helps you understand the coupling between tables that may span what will
eventually become service boundaries. But how do you cut those ties? And what
about cases where the same tables are used from multiple different bounded contexts?
Handling problems like these is not easy, and there are many answers, but it is doable.

Coming back to some concrete examples, let’s consider our music shop again. We
have identified four bounded contexts, and want to move forward with making them
four distinct, collaborating services. We’re going to look at a few concrete examples of
problems we might face, and their potential solutions. And while some of these
examples talk specifically about challenges encountered in standard relational databa‐
ses, you will find similar problems in other alternative NOSQL stores.

Example: Breaking Foreign Key Relationships
In this example, our catalog code uses a generic line item table to store information
about an album. Our finance code uses a ledger table to track financial transactions.
At the end of each month we need to generate reports for various people in the orga‐

Example: Breaking Foreign Key Relationships | 9

http://schemaspy.sourceforge.net/

nization so they can see how we’re doing. We want to make the reports nice and easy
to read, so rather than saying, “We sold 400 copies of SKU 12345 and made $1,300,”
we’d like to add more information about what was sold, instead saying, “We sold 400
copies of Bruce Springsteen’s Greatest Hits and made $1,300.” To do this, our report‐
ing code in the finance package will reach into the line item table to pull out the title
for the SKU. It may also have a foreign key constraint from the ledger to the line item
table, as we see in Figure 1-2.

Figure 1-2. Foreign key relationship

So how do we fix things here? Well, we need to make a change in two places. First, we
need to stop the finance code fromreaching into the line item table, as this table really
belongs to the catalog code, and we don’t want database integration happening once
catalog and finance are services in their own rights. The quickest way to address this
is rather than having the code in finance reach into the line item table, we’ll expose
the data via an API call in the catalog package that the finance code can call. This API
call will be the forerunner of a call we will make over the wire, as we see in Figure 1-3.

Figure 1-3. Post removal of the foreign key relationship

10 | Chapter 1: Splitting the Monolith

At this point it becomes clear that we may well end up having to make two database
calls to generate the report. This is correct. And the same thing will happen if these
are two separate services. Typically concerns around performance are now raised. I
have a fairly easy answer to those: how fast does your system need to be? And how
fast is it now? If you can test its current performance and know what good perfor‐
mance looks like, then you should feel confident in making a change. Sometimes
making one thing slower in exchange for other things is the right thing to do, espe‐
cially if slower is still perfectly acceptable.

But what about the foreign key relationship? Well, we lose this altogether. This
becomes a constraint we need to now manage in our resulting services rather than in
the database level. This may mean that we need to implement our own consistency
check across services, or else trigger actions to clean up related data. Whether or not
this is needed is often not a technologist’s choice to make. For example, if our order
service contains a list of IDs for catalog items, what happens if a catalog item is
removed and an order now refers to an invalid catalog ID? Should we allow it? If we
do, then how is this represented in the order when it is displayed? If we don’t, then
how can we check that this isn’t violated? These are questions you’ll need to get
answered by the people who define how your system should behave for its users.

Example: Shared Static Data

Figure 1-4. Country codes in the database

I have seen perhaps as many country codes stored in databases (shown in Figure 1-4)
as I have written StringUtils classes in-house in Java projects. This seems to imply
that we plan to change the countries our system supports way more frequently than
we’ll deploy new code, but whatever the real reason, these examples of shared static
data being stored in databases come up a lot. So what do we do in our music shop if
all our potential services read from the same table like this?

Example: Shared Static Data | 11

Well, we have a few options. One is to duplicate this table for each of our packages,
with the long-term view that it will be duplicated within each service also. This leads
to a potential consistency challenge, of course: what happens if I update one table to
reflect the creation of Newmantopia off the east coast of Australia, but not another?

A second option is to instead treat this shared, static data as code. Perhaps it could be
in a property file deployed as part of the service, or perhaps just as an enumeration.
The problems around the consistency of data remain, although experience has shown
that it is far easier to push out changes to configuration files than alter live database
tables. This is often a very sensible approach.

A third option, which may well be extreme, is to push this static data into a service of
its own right. In a couple of situations I have encountered, the volume, complexity,
and rules associated with the static reference data were sufficient that this approach
was warranted, but it’s probably overkill if we are just talking about country codes!

Personally, in most situations I’d try to push for keeping this data in configuration
files or directly in code, as it is the simple option for most cases.

Example: Shared Data
Now let’s dive into a more complex example, but one that can be a common problem
when you’re trying to tease apart systems; shared mutable data. Our finance code
tracks payments made by customers for their orders, and also tracks refunds given to
them when they return items. Meanwhile, the warehouse code updates records to
show that orders for customers have been dispatched or received. All of this data is
displayed in one convenient place on the website so that customers can see what is
going on with their account. To keep things simple, we have stored all this informa‐
tion in a fairly generic customer record table, as shown in Figure 1-5.

Figure 1-5. Accessing customer data: are we missing something?

12 | Chapter 1: Splitting the Monolith

So both the finance and the warehouse code are writing to, and probably occasionally
reading from, the same table. How can we tease this apart? What we actually have
here is something you’ll see often—a domain concept that isn’t modeled in the code,
and is in fact implicitly modeled in the database. Here, the domain concept that is
missing is that of Customer.

Figure 1-6. Recognizing the bounded context of the customer

We need to make the current abstract concept of the customer concrete. As a transi‐
ent step, we create a new package called Customer. We can then use an API to expose
Customer code to other packages, such as finance or warehouse. Rolling this all the
way forward, we may now end up with a distinct customer service.

Example: Shared Tables

Figure 1-7. Tables being shared between different contexts

Figure 1-7 shows our last example. Our catalog needs to store the name and price of
the records we sell, and the warehouse needs to keep an electronic record of inven‐

Example: Shared Tables | 13

tory. We decide to keep these two things in the same place in a generic line item table.
Before, with all the code merged in together, it wasn’t clear that we are actually con‐
flating concerns, but now we can see that in fact we have two separate concepts that
could be stored differently.

Figure 1-8. Pulling apart the shared table

The answer here is to split the table in two as we have in Figure 1-8, perhaps creating
a stock list table for the warehouse, and a catalog entry table for the catalog details.

Refactoring Databases
What we have covered in the preceding examples are a few database refactorings that
can help you separate your schemas. For a more detailed discussion of the subject,
you may want to take a look at Refactoring Databases by Scott J. Ambler and Pramod
J. Sadalage (Addison-Wesley).

Staging the Break
So we’ve found seams in our application code, grouping it around bounded contexts.
We’ve used this to identify seams in the database, and we’ve done our best to split
those out. What next? Do you do a big-bang release, going from one monolithic ser‐
vice with a single schema to two services, each with its own schema? I would actually
recommend that you split out the schema but keep the service together before split‐
ting the application code out into separate microservices, as shown in Figure 1-9.

14 | Chapter 1: Splitting the Monolith

Figure 1-9. Staging a service separation

With a separate schema, we’ll be potentially increasing the number of database calls
to perform a single action. Where before we might have been able to have all the data
we wanted in a single SELECT statement, now we may need to pull the data back from
two locations and join in memory. Also, we end up breaking transactional integrity
when we move to two schemas, which could have significant impact on our applica‐
tions; we’ll be discussing this next. By splitting the schemas out but keeping the appli‐
cation code together, we give ourselves the ability to revert our changes or continue to
tweak things without impacting any consumers of our service. Once we are satisfied
that the DB separation makes sense, we can then think about splitting out the appli‐
cation code into two services.

Transactional Boundaries
Transactions are useful things. They allow us to say these events either all happen
together, or none of them happen. They are very useful when we’re inserting data into a
database; they let us update multiple tables at once, knowing that if anything fails
everything gets rolled back, ensuring our data doesn’t get into an inconsistent state.
Simply put, a transaction allows us to group together multiple different activities that
take our system from one consistent state to another—everything works, or nothing
changes.

Transactions don’t just apply to databases, although we most often use them in that
context. Messages brokers, for example, have long allowed you to post and receive
messages within transactions too.

With a monolithic schema, all our create or updates will probably be done within a
single transactional boundary. When we split apart our databases, we lose the safety
afforded to us by having a single transaction. Consider a simple example in the Musi‐
cCorp context. When creating an order, I want to update the order table stating that a

Transactional Boundaries | 15

customer order has been created, and also put an entry into a table for the warehouse
team so it knows an order that needs to be picked for dispatch. We’ve gotten as far as
grouping our application code into separate packages, and have also separated the
customer and wharehouse parts of the schema well enough that we are ready to put
them into their own schemas prior to separating the application code.

Within a single transaction in our existing monolithic schema, creating the order and
inserting the record for the warehouse team takes place within a single transaction, as
shown in Figure 1-10.

Figure 1-10. Updating two tables in a single transaction

But if we have pulled apart the schema into two separate schemas, one for customer-
related data including our order table, and another for the warehouse, we have lost
this transactional safety. The order placing process now spans two separate transac‐
tional boundaries, as we see in Figure 1-11. If our insert into the order table fails, we
can clearly stop everything, leaving us in a consistent state. But what happens when
the insert into the order table works, but the insert into the picking table fails?

16 | Chapter 1: Splitting the Monolith

Figure 1-11. Spanning transactional boundaries for a single operation

Try Again Later
The fact that the order was captured and placed might be enough for us, and we may
decide to retry the insertion into the warehouse’s picking table at a later date. We
could queue up this part of the operation in a queue or logfile, and try again later. For
some sorts of operations this makes sense, but we have to assume that a retry would
fix it.

In many ways, this is another form of what is called eventual consistency. Rather than
using a transactional boundary to ensure that the system is in a consistent state when
the transaction completes, instead we accept that the system will get itself into a con‐
sistent state at some point in the future. This approach is especially useful with busi‐
ness operations that might be long-lived. We’ll discuss this idea in more depth in ???
when we cover scaling patterns.

Abort the Entire Operation
Another option is to reject the entire operation. In this case we have to put the system
back into a consistent state. The picking table is easy, as that insert failed, but we have
a committed transaction in the order table. We need to unwind this. What we have to
do is issue a compensating transaction, kicking off a new transaction to wind back
what just happened. For us, that could be something as simple as issuing a DELETE
statement to remove the order from the database. Then we’d also need to report back
via the UI that the operation failed. Our application could handle both aspects within
a monolithic system, but we’d have to consider what we could do when we split up the
application code. Does the logic to handle the compensating transaction live in the
customer service, the order service, or somewhere else?

Transactional Boundaries | 17

But what happens if our compensating transaction fails? It’s certainly possible. Then
we’d have an order in the order table with no matching pick instruction. In this situa‐
tion, you’d either need to retry the compensating transaction, or allow some backend
process to clean up the inconsistency later on. This could be something as simple as a
maintenance screen that admin staff had access to, or an automated process.

Now think about what happens if we have not one or two operations we want to be
consistent, but three, four, or five. Handling compensating transactions for each fail‐
ure mode becomes quite challenging to comprehend, let alone implement.

Distributed Transactions
An alternative to manually orchestrating compensating transactions is to use a dis‐
tributed transaction. Distributed transactions try to span multiple transactions within
them, using some overall governing process called a transaction manager to orches‐
trate the various transactions being done by underlying systems. Just as with a normal
transaction, a distributed transaction tries to ensure that everything remains in a con‐
sistent state, only in this case it tries to do so across multiple different systems run‐
ning in different processes, often communicating across network boundaries.

The most common algorithm used to handle distributed transactions, especially
short-lived transactions as in the case of handling our customer order, is to use a two-
phase commit. With a two-phase commit, first comes the voting phase. This is where
each participant (also called a cohort in this context) in the distributed transaction
tells the transaction manager whether it thinks its local transaction can go ahead. If
the transaction manager gets a yes vote from all participants, then it tells them all to
go ahead and perform their commits. A single no vote is enough for the transaction
manager to send out a rollback to all parties.

This approach relies on all parties halting until the central coordinating process tells
them to proceed. This means we are vulnerable to outages. If the transaction manager
goes down, the pending transactions never complete. If a cohort fails to respond dur‐
ing voting, everything blocks. And there is also the case of what happens if post- vot‐
ing a commit fails. There is an assumption implicit in this algorithm that this cannot
happen: if a cohort says yes during the voting period, then we have to assume it will
commit. Cohorts have to have a way of making this commit work at some point. This
means this algorithm isn’t foolproof, it just tries to catch most failure cases.

This coordination process also mean locks; that is, pending transactions can hold
locks on resources. Locks on resources can lead to contention, making scaling sys‐
tems much more difficult, especially in the context of distributed systems.

Distributed transactions have been implemented for specific technology stacks, such
as Java’s Transaction API, allowing for disparate resources like a database and a mes‐
sage queue to all participate in the same, overarching transaction. The various algo‐

18 | Chapter 1: Splitting the Monolith

rithms are hard to get right, so I’d suggest you avoid trying to create your own.
Instead, do lots of research on this topic if this seems like the route you want to take,
and see if you can use an existing implementation.

So What to Do?
All of these solutions add complexity. As you can see, distributed transactions are
hard to get right and can actually inhibit scaling. Systems that eventually converge
through compensating retry logic can be harder to reason about, and may need other
compensating behavior to fix up inconsistencies in data.

When you encounter business operations that currently occur within a single transac‐
tion, ask yourself if they really need to. Can they happen in different, local transac‐
tions, and rely on the concept of eventual consistency? These systems are much easier
to build and scale (we’ll discuss this more in ???).

If you do encounter state that really, really wants to be kept consistent, do everything
you can to avoid splitting it up in the first place. Try really hard. If you really need to
go ahead with the split, think about moving from a purely technical view of the pro‐
cess (e.g., a database transaction) and actually create a concrete concept to represent
the transaction itself. This gives you a handle, or a hook, on which to run other oper‐
ations like compensating transactions, and a way to monitor and manage these more
complex concepts in your system. For example, you might create the idea of an “in-
process-order” that gives you a natural place to focus all logic around processing the
order end to end (and dealing with exceptions).

Reporting
As we’ve already seen, in splitting a service into smaller parts, we need to also poten‐
tially split up how and where data is stored. This creates a problem, however, when it
comes to one vital and common use case: reporting.

A change in architecture as fundamental as moving to a microservices architecture
will cause a lot of disruption, but it doesn’t mean we have to abandon everything we
do. The audience of our reporting systems are users like any other, and we need to
consider their needs. It would be arrogant to fundamentally change our architecture
and just ask them to adapt. While I’m not suggesting that the space of reporting isn’t
ripe for disruption—it certainly is—there is value in determining how to work with
existing processes first. Sometimes we have to pick our battles.

The Reporting Database
Reporting typically needs to group together data from across multiple parts of our
organization in order to generate useful output. For example, we might want to

Reporting | 19

enrich the data from our general ledger with descriptions of what was sold, which we
get from a catalog. Or we might want to look at the shopping behavior of specific,
high-value customers, which could require information from their purchase history
and their customer profile.

In a standard, monolithic service architecture, all our data is stored in one big data‐
base. This means all the data is in one place, so reporting across all the information is
actually pretty easy, as we can simply join across the data via SQL queries or the like.
Typically we won’t run these reports on the main database for fear of the load gener‐
ated by our queries impacting the performance of the main system, so often these
reporting systems hang on a read replica as shown in Figure 1-12.

Figure 1-12. Standard read replication

With this approach we have one sizeable upside—that all the data is already in one
place, so we can use fairly straightforward tools to query it. But there are also a couple
of downsides with this approach. First, the schema of the database is now effectively a
shared API between the running monolithic services and any reporting system. So a
change in schema has to be carefully managed. In reality, this is another impediment
that reduces the chances of anyone wanting to take on the task of making and co-
coordinating such a change.

Second, we have limited options as to how the database can be optimized for either
use case—backing the live system or the reporting system. Some databases let us
make optimizations on read replicas to enable faster, more efficient reporting; for
example, MySQL would allow us to run a different backend that doesn’t have the
overhead of managing transactions. However, we cannot structure the data differ‐
ently to make reporting faster if that change in data structure has a bad impact on the
running system. What often happens is that the schema either ends up being great for
one use case and lousy for the other, or else becomes the lowest common denomina‐
tor, great for neither purpose.

Finally, the database options available to us have exploded recently. While standard
relational databases expose SQL query interfaces that work with many reporting
tools, they aren’t always the best option for storing data for our running services.
What if our application data is better modeled as a graph, as in Neo4j? Or what if we’d

20 | Chapter 1: Splitting the Monolith

rather use a document store like MongoDB? Likewise, what if we wanted to explore
using a column-oriented database like Cassandra for our reporting system, which
makes it much easier to scale for larger volumes? Being constrained in having to have
one database for both purposes results in us often not being able to make these
choices and explore new options.

So it’s not perfect, but it works (mostly). Now if our information is stored in multiple
different systems, what do we do? Is there a way for us to bring all the data together to
run our reports? And could we also potentially find a way to eliminate some of the
downsides associated with the standard reporting database model?

In turns out we have a number of viable alternatives to this approach. Which solution
makes the most sense to you will depend on a number of factors, but we’ll explore a
few different options that I have seen in practice.

Data Retrieval via Service Calls
There are many variants of this model, but they all rely on pulling the required data
from the source systems via API calls. For a very simple reporting system, like a dash‐
board that might just want to show the number of orders placed in the last 15
minutes, this might be fine. To report across data from two or more systems, you
need to make multiple calls to assemble this data.

This approach breaks down rapidly with use cases that require larger volumes of data,
however. Imagine a use case where we want to report on customer purchasing behav‐
ior for our music shop over the last 24 months, looking at various trends in customer
behavior and how this has impacted on revenue. We need to pull large volumes of
data from at least the customer and finance systems. Keeping a local copy of this data
in the reporting system is dangerous, as we may not know if it has changed (even his‐
toric data may be changed after the fact), so to generate an accurate report we need all
of the finance and customer records for the last two years. With even modest num‐
bers of customers, you can see that this quickly will become a very slow operation.

Reporting systems also often rely on third-party tools that expect to retrieve data in a
certain way, and here providing a SQL interface is the fastest way to ensure your
reporting tool chain is as easy to integrate with as possible. We could still use this
approach to pull data periodically into a SQL database, of course, but this still
presents us with some challenges.

One of the key challenges is that the APIs exposed by the various microservices may
well not be designed for reporting use cases. For example, a customer service may
allow us to find a customer by an ID, or search for a customer by various fields, but
wouldn’t necessarily expose an API to retrieve all customers. This could lead to many
calls being made to retrieve all the data—for example, having to iterate through a list

Data Retrieval via Service Calls | 21

of all the customers, making a separate call for each one. Not only could this be ineffi‐
cient for the reporting system, it could generate load for the service in question too.

While we could speed up some of the data retrieval by adding cache headers to the
resources exposed by our service, and have this data cached in something like a
reverse proxy, the nature of reporting is often that we access the long tail of data. This
means that we may well request resources that no one else has requested before (or at
least not for a sufficiently long time), resulting in a potentially expensive cache miss.

You could resolve this by exposing batch APIs to make reporting easier. For example,
our customer service could allow you to pass a list of customer IDs to it to retrieve
them in batches, or may even expose an interface that lets you page through all the
customers. A more extreme version of this is to model the batch request as a resource
in its own right. For example, the customer service might expose something like a
BatchCustomerExport resource endpoint. The calling system would POST a BatchRe
quest, perhaps passing in a location where a file can be placed with all the data. The
customer service would return an HTTP 202 response code, indicating that the
request was accepted but has not yet been processed. The calling system could then
poll the resource waiting until it retrieves a 201 Created status, indicating that the
request has been fulfilled, and then the calling system could go and fetch the data.
This would allow potentially large data files to be exported without the overhead of
being sent over HTTP; instead, the system could simply save a CSV file to a shared
location.

I have seen the preceding approach used for batch insertion of data, where it worked
well. I am less in favor of it for reporting systems, however, as I feel that there are
other, potentially simpler solutions that can scale more effectively when you’re deal‐
ing with traditional reporting needs.

Data Pumps
Rather than have the reporting system pull the data, we could instead have the data
pushed to the reporting system. One of the downsides of retrieving the data by stan‐
dard HTTP calls is the overhead of HTTP when we’re making a large number of calls,
together with the overhead of having to create APIs that may exist only for reporting
purposes. An alternative option is to have a standalone program that directly accesses
the database of the service that is the source of data, and pumps it into a reporting
database, as shown in Figure 1-13.

22 | Chapter 1: Splitting the Monolith

Figure 1-13. Using a data pump to periodically push data to a central reporting database

At this point you’ll be saying, “But Sam, you said having lots of programs integrating
on the same database is a bad idea!” At least I hope you’ll be saying that, given how
firmly I made the point earlier! This approach, if implemented properly, is a notable
exception, where the downsides of the coupling are more than mitigated by making
the reporting easier.

To start with, the data pump should be built and managed by the same team that
manages the service. This can be something as simple as a command-line program
triggered via Cron. This program needs to have intimate knowledge of both the inter‐
nal database for the service, and also the reporting schema. The pump’s job is to map
one from the other. We try to reduce the problems with coupling to the service’s
schema by having the same team that manages the service also manage the pump. I
would suggest, in fact, that you version-control these together, and have builds of the
data pump created as an additional artifact as part of the build of the service itself,
with the assumption that whenever you deploy one of them, you deploy them both.
As we explicitly state that we deploy these together, and don’t open up access to the
schema to anyone outside of the service team, many of the traditional DB integration
challenges are largely mitigated.

The coupling on the reporting schema itself remains, but we have to treat it as a pub‐
lished API that is hard to change. Some databases give us techniques where we could
further mitigate this cost. Figure 1-14 shows an example of this for relational databa‐
ses, where we could have one schema in the reporting database for each service, using
things like materialized views to create the aggregated view. That way, we expose only
the reporting schema for the customer data to the customer data pump. Whether this
is something that you can do in a performant manner, however, will depend on the
capabilities of the database you picked for reporting.

Data Pumps | 23

Figure 1-14. Making use of materialized views to form a single monolithic reporting
schema

Here, of course, the complexity of integration is pushed deeper into the schema, and
will rely on capabilities in the database to make such a setup performant. While I
think data pumps in general are a sensible and workable suggestion, I am less con‐
vinced that the complexity of a segmented schema is worthwhile, especially given the
challenges in managing change in the database.

Alternative Destinations
On one project I was involved with, we used a series of data pumps to populate JSON
files in AWS S3, effectively using S3 to masquerade as a giant data mart! This
approach worked very well until we needed to scale our solution, and at the time of
writing we are looking to change these pumps to instead populate a cube that can be
integrated with standard reporting tools like Excel and Tableau.

Event Data Pump
In ???, we touched on the idea of microservices emitting events based on the state
change of entities that they manage. For example, our customer service may emit an
event when a given customer is created, or updated, or deleted. For those microservi‐
ces that expose such event feeds, we have the option of writing our own event sub‐
scriber that pumps data into the reporting database, as shown in Figure 1-15.

24 | Chapter 1: Splitting the Monolith

Figure 1-15. An event data pump using state change events to populate a reporting data‐
base

The coupling on the underlying database of the source microservice is now avoided.
Instead, we are just binding to the events emitted by the service, which are designed
to be exposed to external consumers. Given that events are temporal in nature, it also
makes it easier for us to be smarter in what data we sent to our central reporting
store; we can send data to the reporting system as we see an event, allowing data to
flow faster to our reporting system, rather than relying on a regular schedule as with
the data pump.

Also if we store which events have already been processed, we can just process the
new events as they arrive, assuming the old events have already been mapped into the
reporting system. This means our insertion will be more efficient, as we only need to
send deltas. We can do similar things with a data pump, but we have to manage this
ourselves, whereas the fundamentally temporal nature of the stream of events (x hap‐
pens at timestamp y) helps us greatly.

As our event data pump is less coupled to the internals of the service, it is also easier
to consider this being managed by a separate group from the team looking after the
microservice itself. As long as the nature of our event stream doesn’t overly couple
subscribers to changes in the service, this event mapper can evolve independently of
the service it subscribes to.

The main downsides to this approach are that all the required information must be
broadcast as events, and it may not scale as well as a data pump for larger volumes of
data that has the benefit of operating directly at the database level. Nonetheless, the
looser coupling and fresher data available via such an approach makes it strongly
worth considering if you are already exposing the appropriate events.

Backup Data Pump
This option is based on an approach used at Netflix, which takes advantage of exist‐
ing backup solutions and also resolves some scale issues that Netflix has to deal with.
In some ways you can consider this a special case of a data pump, but it seemed like
such an interesting solution that it deserves inclusion.

Netflix has decided to standardize on Cassandra as the backing store for its services,
of which there are many. Netflix has invested significant time in building tools to

Backup Data Pump | 25

make Cassandra easy to work with, much of which the company has shared with the
rest of the world via numerous open source projects. Obviously it is very important
that the data Netflix stores is properly backed up. To back up Cassandra data, the
standard approach is to make a copy of the data files that back it and store them
somewhere safe. Netflix stores these files, known as SSTables, in Amazon’s S3 object
store, which provides significant data durability guarantees.

Netflix needs to report across all this data, but given the scale involved this is a non‐
trivial challenge. Its approach is to use Hadoop that uses SSTable backup as the source
of its jobs. In the end Netflix ended up implementing a pipeline capable of processing
large amounts of data using this approach, which it then open sourced as the Aegis‐
thus project. Like data pumps, though, with this pattern we still have a coupling to the
destination reporting schema (or target system).

It is conceivable that using a similar approach—that is, using mappers that work off
backups—would work in other contexts as well. And if you’re already using Cassan‐
dra, Netflix has already done much of the work for you!

Toward Real Time
Many of the patterns previously outlined are different ways of getting a lot of data
from many different places to one place. But does the idea that all our reporting will
be done from one location really stack up anymore? We have dashboards, alerting,
financial reports, user analytics—all of these use cases have different tolerances for
accuracy and timeliness, which may result in different technical options coming to
bear. As I will detail in ???, we are moving more and more toward generic eventing
systems capable of routing our data to multiple different places depending on need.

Cost of Change
There are many reasons why, throughout the book, I promote the need to make
small, incremental changes, but one of the key drivers is to understand the impact of
each alteration we make and change course if required. This allows us to better miti‐
gate the cost of mistakes, but doesn’t remove the chance of mistakes entirely. We can
—and will—make mistakes, and we should embrace that. What we should also do,
though, is understand how best to mitigate the costs of those mistakes.

As we have seen, the cost involved in moving code around within a codebase is pretty
small. We have lots of tools that support us, and if we cause a problem the fix is gen‐
erally quick. Splitting apart a database, however, is much more work, and rolling back
a database change just as complex. Likewise, untangling an overly coupled integration
between services, or having to completely rewrite an API that is used by multiple con‐
sumers, can be a sizeable undertaking. The large cost of change means that these

26 | Chapter 1: Splitting the Monolith

https://github.com/Netflix/aegisthus
https://github.com/Netflix/aegisthus

operations are increasingly risky. How can we manage this risk? My approach is to try
to make mistakes where the impact will be lowest.

I tend to do much of my thinking in the place where the cost of change and the cost
of mistakes is as low as it can be: the whiteboard. Sketch out your proposed design.
See what happens when you run use cases across what you think your service bound‐
aries will be. For our music shop, for example, imagine what happens when a cus‐
tomer searches for a record, registers with the website, or purchases an album. What
calls get made? Do you start seeing odd circular references? Do you see two services
that are overly chatty, which might indicate they should be one thing?

A great technique here is to adapt an approach more typically taught for the design of
object-oriented systems: class-responsibility-collaboration (CRC) cards. With CRC
cards, you write on one index card the name of the class, what its responsibilities are,
and who it collaborates with. When working through a proposed design, for each ser‐
vice I list its responsibilities in terms of the capabilities it provides, with the collabo‐
rators specified in the diagram. As you work through more use cases, you start to get
a sense as to whether all of this hangs together properly.

Understanding Root Causes
We have discussed how to split apart larger services into smaller ones, but why did
these services grow so large in the first place? The first thing to understand is that
growing a service to the point that it needs to be split is completely OK. We want the
architecture of our system to change over time in an incremental fashion. The key is
knowing it needs to be split before the split becomes too expensive.

But in practice many of us will have seen services grow well beyond the point of san‐
ity. Despite knowing that a smaller set of services would be easier to deal with than
the huge monstrosity we currently have, we still plow on with growing the beast.
Why?

Part of the problem is knowing where to start, and I’m hoping this chapter has hel‐
ped. But another challenge is the cost associated with splitting out services. Finding
somewhere to run the service, spinning up a new service stack, and so on, are non‐
trivial tasks. So how do we address this? Well, if doing something is right but difficult,
we should strive to make things easier. Investment in libraries and lightweight service
frameworks can reduce the cost associated with creating the new service. Giving peo‐
ple access to self-service provision virtual machines or even making a Platform as a
Service (PaaS) available will make it easier to provision systems and test them.
Throughout the rest of the book, we’ll be discussing a number of ways to help you
keep this cost down.

Understanding Root Causes | 27

Summary
We decompose our system by finding seams along which service boundaries can
emerge, and this can be an incremental approach. By getting good at finding these
seams and working to reduce the cost of splitting out services in the first place, we
can continue to grow and evolve our systems to meet whatever requirements come
down the road. As you can see, some of this work can be painstaking. But the very
fact that it can be done incrementally means there is no need to fear this work.

So now we can split our services out, but we’ve introduced some new problems too.
We have many more moving parts to get into production now! So next up we’ll dive
into the world of deployment.

28 | Chapter 1: Splitting the Monolith

	Cover
	Table of Contents
	Chapter 1. Splitting the Monolith
	It’s All About Seams
	Breaking Apart MusicCorp
	The Reasons to Split the Monolith
	Pace of Change
	Team Structure
	Security
	Technology

	Tangled Dependencies
	The Database
	Getting to Grips with the Problem
	Example: Breaking Foreign Key Relationships
	Example: Shared Static Data
	Example: Shared Data
	Example: Shared Tables
	Refactoring Databases
	Staging the Break

	Transactional Boundaries
	Try Again Later
	Abort the Entire Operation
	Distributed Transactions
	So What to Do?

	Reporting
	The Reporting Database
	Data Retrieval via Service Calls
	Data Pumps
	Alternative Destinations

	Event Data Pump
	Backup Data Pump
	Toward Real Time
	Cost of Change
	Understanding Root Causes
	Summary

